REPRODUCIBLE

Spaced Repetition Overview

Use the following overview of spaced repetition as a handy reference or share it with your team.

What is it? Spaced repetition is the idea of revisiting a learning target multiple times over time. As opposed to cramming, spaced repetition encourages multiple short study sessions spread out over days, weeks, or months instead of one massed session.

Why use it? Spaced repetition increases a student's ability to remember information over time. It builds retention, application, and transfer skills (Emeny, Hartwig, & Rohrer, 2021; Gluckman, Vlach, & Sandhofer, 2014; Karpicke & Bauernschmidt, 2011).

How to use it: Instead of devoting a single day to a single learning target, introduce the learning target and revisit it over time. The following is a guide for when to revisit a learning target after initial exposure.

Initial exposure	
One day	
One week	
One month	
Six months	
One year	

Boundary conditions: The first time to revisit a topic should be at least one day and not longer than two days after initial exposure (Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012). While students often prefer to mass their study instead of spreading it out over time (Biwer, de Bruin, Schreurs, & oude Egbrink, 2020), repetition within a single learning session does not show this to be very beneficial (Dunlosky, Rawson, Marsh, Nathan, & Willingham, 2013).

Other similar terms: distributed practice, spacing effect, spaced practice

References

- Biwer, F., de Bruin, A. B. H., Schreurs, S., & oude Egbrink, M. G. A. (2020). Future steps in teaching desirably difficult learning strategies: Reflections from the Study Smart program. *Journal of Applied Research in Memory and Cognition*, *9*(4), 439–446.
- Carpenter, S. K., Cepeda, N. J., Rohrer, D., Kang, S. H. K., & Pashler, H. (2012). Using spacing to enhance diverse forms of learning: Review of recent research and implications for instruction. *Educational Psychology Review*, 24(3), 369–378.
- Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students' learning with effective learning techniques: Promising directions from cognitive and educational psychology. *Psychological Science in the Public Interest*, 14(1), 4–58.
- Emeny, W. G., Hartwig, M. K., & Rohrer, D. (2021). Spaced mathematics practice improves test scores and reduces overconfidence. *Applied Cognitive Psychology*, 35(4), 1082–1089.
- Gluckman, M., Vlach, H. A., & Sandhofer, C. M. (2014). Spacing simultaneously promotes multiple forms of learning in children's science curriculum. *Applied Cognitive Psychology*, 28(2), 266–273.
- Karpicke, J. D., & Bauernschmidt, A. (2011). Spaced retrieval: Absolute spacing enhances learning regardless of relative spacing. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 37(5), 1250–1257.